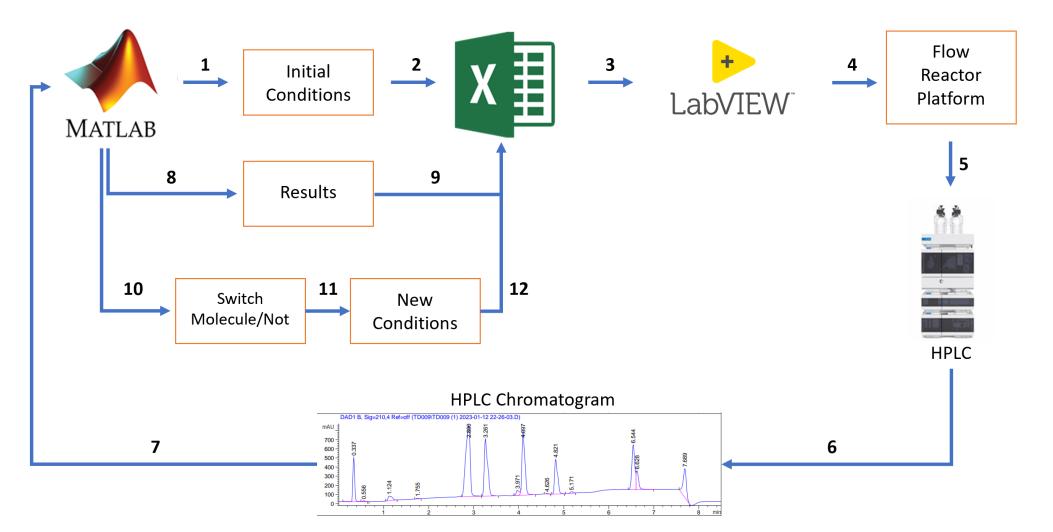
# **A Self-Optimising Automated Flow Reactor System** for Impurity Scouting in Organic Synthesis


Louisa J. Kamajaya<sup>a</sup>, Thomas M. Dixon<sup>a,c</sup>, Richard A. Bourne<sup>b,c</sup>

<sup>a</sup>School of Chemistry, University of Leeds, Leeds, LS2 9JT. <sup>b</sup>School of Chemical and Process Engineering, School of Chemistry, University of Leeds, Leeds, LS2 9JT. <sup>c</sup>Institute of Process Research and Development, School of Chemistry, University of Leeds, Leeds, LS2 9JT.

### 1. Project Background

- The costs associated with drug development continues to rise, with an average ٠ R&D spending of \$1.1 billion to deliver new drugs into market (1).
- Impurity characterisation and quantification are an important part of pre-clinical • trials to ensure drug safety and quality (2).
- Impurities are often present in small quantities, thus making the process challenging and time-consuming (3).
- Flow chemistry provides a unique opportunity to create an autonomous platform • for impurity scouting and reaction optimisation.

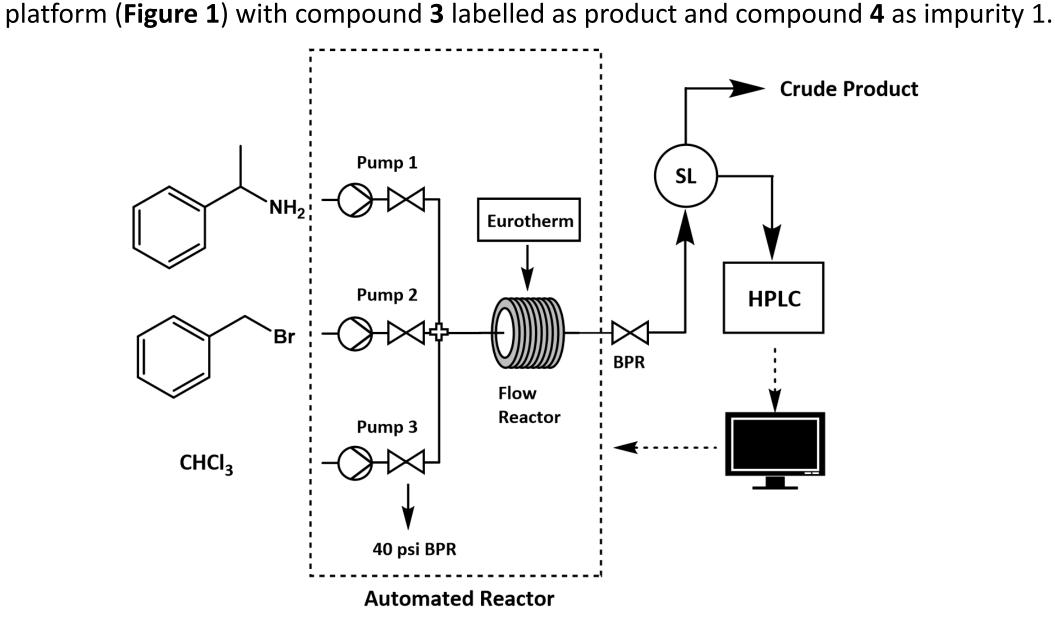
### 3. Self-Optimisation Procedure



## 2. Automated Flow Reactor Platform

DIPEA

CH<sub>3</sub>CI


NH2

benzylated by-product

Model reaction shown in Scheme 1 was implemented into an automated flow reactor

Scheme 1. 1) Starting material  $\alpha$ -methylbenzylamine 2) benzyl bromide 3) mono-benzylated product 4) di-

Product





cm19ljk@leeds.ac.uk

Impurity 1

Figure 2. The closed-loop self-optimisation procedure facilitated by interaction between hardware and software.

- The optimisation procedure was initialised with seven initial conditions generated by Latin Hypercube Sampling.
- Bayesian optimiser with an Adapted Expected Improvement acquisition function was • used to generate reaction conditions for yield optimisation.
- Surrogate models were updated as new observations are made.
- MATLAB was utilised to script the optimisation algorithm, generate new experimental conditions, and perform automated data analysis.

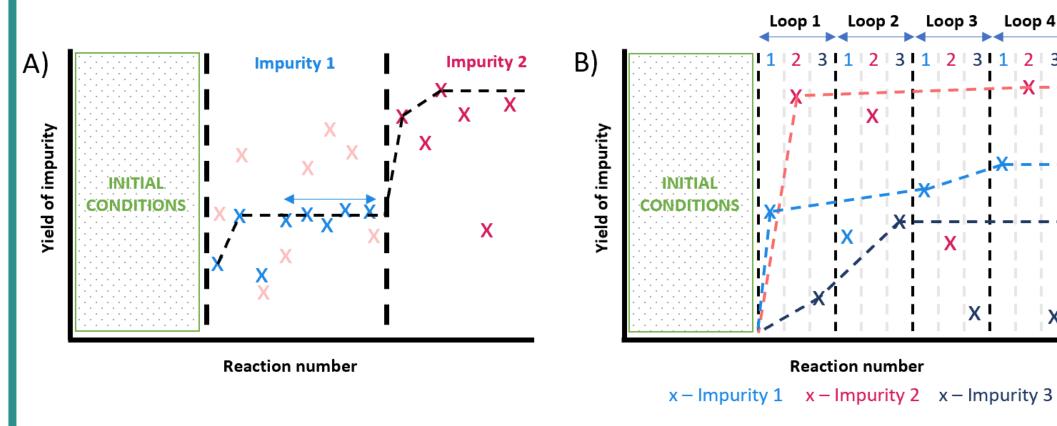
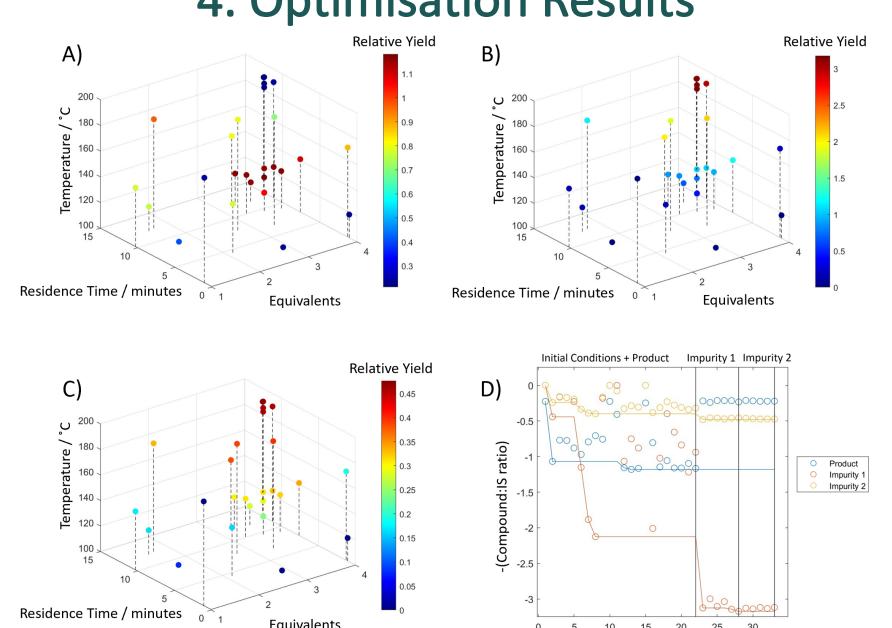




Figure 3. Compound-switching methods A) pre-defined cut-off number and ±5% average and B) loop

- Objective function of compound:internal standard ratio was maximised that is proportional to yield.
- Three compound-switching methods were developed to allow the yield of multiple

Figure 1. Automated flow reactor platform comprised of: Three HPLC pumps, back-pressure regulators (BPR), metal flow reactor, sampling loop, and HPLC.

- All modules were connected and remotely controlled by LabVIEW.
- Yield optimisation were achieved by varying temperature, residence time, and equivalents of 1:2.



#### **4.** Optimisation Results

#### 5. Conclusion and Future Work

- An autonomous self-optimising flow reactor system for impurity scouting and • yield optimisation was developed and established.
- The system comprised of **three key elements**: an automated flow platform, on-line • analytical tool (HPLC) and a self-optimising Bayesian algorithm.
- Four different optimisation experiments were successfully run autonomously. •
- **Future work** may involve utilising the platform for other pharmaceutically-relevant • reactions, such as Suzuki-Miyaura coupling.

### 6. References and Acknowledgements

(1) Wouters, O.J., McKee, M. and Luyten, J. Estimated research and development investment needed to bring a new medicine to market, 2009-2018. JAMA. 2020, 323(9), p. 844.

(2) Rahman, N., Azmi, S.N. and Wu, H.-F. The importance of impurity analysis in pharmaceutical products: An integrated approach. Accreditation and Quality Assurance. 2006, **11**(1-2), pp. 69–74.

(3) Liu, K.-T. and Chen, C.-H. Determination of impurities in pharmaceuticals: Why and how?. Quality Management and Quality Control -New Trends and Developments [Preprint]. 2019.

I would like to thank Professor Richard Bourne and Thomas Dixon for their supervisory and technical support.

#### Experiment Number

Figure 4. Optimisation results for A) product B) impurity 1 C) impurity 2 and D) minimum response curve using ±5% average method. Relative yield was calculated from ratio of compound to internal standard.

#### **Design Space:**

- Temperature: 100 190°C
- Residence Time: 1 12.5 mins
- Equivalents: 1 4

#### **Optimal Reaction Conditions:**

| Compound   | Equivalents | Residence   | Temperature |
|------------|-------------|-------------|-------------|
| Optimised  |             | Time (mins) | (°C)        |
| Product    | 4           | 12.5        | 112         |
| Impurity 1 | 4           | 12.5        | 182         |
| Impurity 2 | 4           | 12.5        | 190         |

- The self-optimising algorithm was able to maximise the yield for multiple compounds in one optimisation experiment.
- Once initialised, the self-optimisation procedure was run autonomously without human intervention.
- The algorithm was able to distinguish different optimal points despite the small differences in temperature for impurity 1 and impurity 2.
- Results were reproducible indicating that precise control of flow rates and ٠ temperature was achieved.