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MATHEMATICAL QUEUEING MODELS AND THEIR APPLICATIONS
IN EVERYDAY PROBLEMS

How long
will it

Have you ever thought about how much time you Using probability theory and stochastic processes, we gain

spend waiting in lines? On average, people spend insight into the dynamics of traffic flows.

around five years of their lives waiting in queues. 5

Our Python simulation models recreate real tratfic

Join us on this analytical journey where theory scenarios, allowing us to uncover their complexity.
meets code and modelling reveals the operational Markov chains track transitions and Monte Carlo
principles driving traffic dynamics. simulations generate scenarios, revealing underlying
patterns.
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waiting time between customers

Algorithm concept:

Consider X; the number of customers arriving in a line by time

o 1. while current time < simulation time: #simulate
follows an exponential distribution t,te IR
ol . . . . . - _ _ _ 2 arrival time = (A)
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T — A stochastic process X, with Xy = 0 satisfying these </>

assumptions is called a Poisson process with rate parameter A.
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TRAFFIC HYDRODYNAMIC LIMIT o
Consider the one-dimensional flow of vehicles. Arrivals J: . .
. x - distance variable ou 8(cu(1 . u)) NI ? | T\ 1
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i c(x) - velocity ; ! ;

+ u(x,t) - car density at point x and time t N | I ! I_l N S
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TRAFFIC MODELLING

EXAMPLE Ne 1: TRAFFIC FLOW Cf' SCAN ME) EXAMPLE Ne 2: TRAFFIC JAM FORMATION

Input par. = 1, movement par. = 1, output par. =1

Input par. = 15, movement par. = 10, output par. =1

blue square - space taken blue square - space taken

white square - space available white square - space available

time step =0 time step=0
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time step = 305 o® ® time step = 623
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time step = 610
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HEIGHT FUNCTION HEIGHT FUNCTION
Pass Count at Different Stages: input rate = 1, movement rate = 1, exit rate = 1 @ s 'é:!; *.3.°2 l"t' 2% Pass Count at Different Stages: input rate = 15, movement rate = 10, exitrate = 1
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