# The Variance of the Fibonacci **Partition Function**

Student: Owen Jones (owen.s.jones@warwick.ac.uk) Supervisor: Sam Chow Department: Mathematics

## **FIBONACCI PARTITIONS**

| For any $n \in \mathbb{N}$ , $R(n)$ is defined to be the number of solutions to the | C   |
|-------------------------------------------------------------------------------------|-----|
| equation                                                                            | \ / |

$$F_{m_1} + F_{m_2} + \dots + F_{m_r} = n \tag{1}$$

where  $F_m$  represents the  $m^{th}$  Fibonacci number and

 $m_r > \cdots > m_2 > m_1 \ge 2$  are integers. In other words, R(n) is the number of ways to *partition n* into distinct Fibonacci numbers. The function *R* is thus called the Fibonacci partition function.

. . . . . .

500

### THE ERRATIC NATURE OF R

20

The behaviour of the Fibonacci partition function is erratic. For example,  $R(F_m - 1) = 1$  for any positive integer m. However, as  $m \to \infty$ ,  $R(F_m^2 - 1) \to \infty$ . In fact,  $R(F_m^2 - 1) = F_m$ .



200

### FINDING THE VARIANCE

100

To quantify this spread of values taken by R, we try to understand

300

the quantity 
$$\frac{V(n)}{n+1} - \frac{A(n)^2}{(n+1)^2}$$
, where  
 $V(n) = R(0)^2 + \dots + R(n)^2$  and wher  
 $A(n) = R(0) + \dots + R(n).$ 

This quantity can thus be termed the *variance* of R. It was shown in [1] that  $A(n) \approx n^{\lambda}$  where  $\lambda = \frac{\log 2}{\log \phi} \approx 1.44$  and  $\phi = \frac{1+\sqrt{5}}{2}$  is the golden ratio. Hence, we only need study the function V.

to

We consequently have five possibilities for  $\{m_r, p_s\}$ :

2.  $\{F_n\}$ 

- *3.*  $\{F_{\gamma}\}$
- 4.  $\{F_n\}$
- 5.  $\{F_{\gamma}\}$

#### **A RECURSIVE FORMULA**

inequality

0 < F

Notice that we can interpret  $R(n)^2$  as the number of 'pairs' of solutions to the equation (1). That is, the number of solutions to

$$F_{p_1} + F_{p_2} + \dots + F_{p_s} = F_{m_1} + F_{m_2} + \dots + F_{m_r} = n.$$
  
As a result, we can view  $V(n)$  as the number of solutions to

$$F_{n_1} + F_{n_2} + \dots + F_{n_n} = F_{m_1} + F_{m_2} + \dots + F_{m_n} \le n.$$

$$F_{p_1} + F_{p_2} + \dots + F_{p_s} = F_{m_1} + F_{m_2} + \dots + F_{m_r} \le F_{m_1}$$

#### CASE ANALYSIS

We now consider  $V(F_m) - V(F_{m-1})$ , which is the number of solutions

$$F_{m-1} < F_{p_1} + F_{p_2} + \dots + F_{p_s} = F_{m_1} + F_{m_2} + \dots + F_{m_r} \le F_m.$$
  
Clearly,  $m_r$  and  $p_s$  cannot be greater than  $m$ . Moreover, the identity

$$F_2 + F_3 + \dots + F_{m-3} = F_{m-1} - 2 < F_{m-1}$$

means  $m_r$  and  $p_s$  must be at least m - 2. In addition,  $\{m_r, p_s\} \neq m_r$  $\{m, m - 2\}$  since the above identity implies

$$F_2 + F_3 + \dots + F_{m-2} < F_m$$

1. 
$$\{F_m\}$$
  
2.  $\{F_{m-1}\}$   
3.  $\{F_{m-2}\}$   
4.  $\{F_m, F_{m-1}\}$ 

$$m_{-1}, F_{m-2}$$

Each of our five cases reduces the original inequality to a familiar equation/inequality but for a smaller value of m. This is in part due to the fact that  $F_m = F_{m-1} + F_{m-2}$ . For example, case 2. gives us the

$$F_{p_1} + \dots + F_{p_{s-1}} = F_{m_1} + \dots + F_{m_{r-1}} \le F_{m-2}$$

which has  $V(F_{m-2}) - V(0)$  solutions. Adding solutions for each case in this way gives the recursion

$$V_m = 2V_{m-1} + 3V_{m-2} - 4V_{m-3} - 2V_{m-4} + 2V_{m-5}$$
$$-2R_{m-1} - 2R_{m-4} + 2R_{m-5} + 1$$

re  $V_m = V(F_m)$  and  $R_m = R(F_m)$ .

Letting  $\lambda_1 \approx 2.48$  be the (unique) root of largest magnitude, we see that  $V_m \sim c_1 \lambda_1^m$  with  $c_1 \approx 0.0735$ . Finally, it can be shown that  $V(n) \approx n^p$ , with  $p = \frac{\log(\lambda_1)}{\log(\phi)} \approx 1.89$ , in a similar way to the method in [1].



#### REFERENCES

[1] S. Chow and T. Slattery, On Fibonacci partitions, J. Number Theory **225** (2021), 310–326. [2] L. Carlitz, Fibonacci representations, Fibonacci Quart. 6 (1968), 193–220.



Now, the formula  $R_m = \lfloor m/2 \rfloor$ , deduced in [2], can be used to prove that the recursion is solved by

$$V_m = \sum_{i=1}^{5} c_i \lambda_i^m + m \left[\frac{m}{2}\right] - \frac{m^2}{4}$$

are fixed real numbers chosen to fit initial nd the  $\lambda_i$  are the (real, distinct) roots of the

$$x^5 - 2x^4 - 3x^3 + 4x^2 + 2x - 2.$$