The Variance of the Fibonacci

Partition Function

Student: Owen Jones (owen.s.jones@warwick.ac.uk)
Supervisor: Sam Chow
Department: Mathematics

Fibonacci Partitions

For any $n \in \mathbb{N}, R(n)$ is defined to be the number of solutions to the equation

$$
\begin{equation*}
F_{m_{1}}+F_{m_{2}}+\cdots+F_{m_{r}}=n \tag{1}
\end{equation*}
$$

where F_{m} represents the $m^{t h}$ Fibonacci number and
$m_{r}>\cdots>m_{2}>m_{1} \geq 2$ are integers. In other words, $R(n)$ is the number of ways to partition n into distinct Fibonacci numbers. The function R is thus called the Fibonacci partition function.

The Erratic Nature of R

The behaviour of the Fibonacci partition function is erratic. For example, $R\left(F_{m}-1\right)=1$ for any positive integer m. However, as $m \rightarrow \infty, R\left(F_{m}^{2}-1\right) \rightarrow \infty$. In fact, $R\left(F_{m}^{2}-1\right)=F_{m}$.

Figure 1: Number of Fibonacci partitions for n against n

Finding The Variance

To quantify this spread of values taken by R, we try to understand the quantity $\frac{V(n)}{n+1}-\frac{A(n)^{2}}{(n+1)^{2}}$, where

$$
\begin{gathered}
V(n)=R(0)^{2}+\cdots+R(n)^{2} \text { and } \\
A(n)=R(0)+\cdots+R(n)
\end{gathered}
$$

This quantity can thus be termed the variance of R. It was shown in [1] that $A(n)=n^{\lambda}$ where $\lambda=\frac{\log 2}{\log \phi} \approx 1.44$ and $\phi=\frac{1+\sqrt{5}}{2}$ is the golden ratio. Hence, we only need study the function V.

Notice that we can interpret $R(n)^{2}$ as the number of 'pairs' of solutions to the equation (1). That is, the number of solutions to

$$
F_{p_{1}}+F_{p_{2}}+\cdots+F_{p_{s}}=F_{m_{1}}+F_{m_{2}}+\cdots+F_{m_{r}}=n
$$

As a result, we can view $V(n)$ as the number of solutions to

$$
F_{p_{1}}+F_{p_{2}}+\cdots+F_{p_{s}}=F_{m_{1}}+F_{m_{2}}+\cdots+F_{m_{r}} \leq n
$$

CASE ANALYSIS

We now consider $V\left(F_{m}\right)-V\left(F_{m-1}\right)$, which is the number of solutions to
$F_{m-1}<F_{p_{1}}+F_{p_{2}}+\cdots+F_{p_{s}}=F_{m_{1}}+F_{m_{2}}+\cdots+F_{m_{r}} \leq F_{m}$.
Clearly, m_{r} and p_{s} cannot be greater than m. Moreover, the identity

$$
F_{2}+F_{3}+\cdots+F_{m-3}=F_{m-1}-2<F_{m-1}
$$

means m_{r} and p_{s} must be at least $m-2$. In addition, $\left\{m_{r}, p_{s}\right\} \neq$ $\{m, m-2\}$ since the above identity implies

$$
F_{2}+F_{3}+\cdots+F_{m-2}<F_{m}
$$

We consequently have five possibilities for $\left\{m_{r}, p_{s}\right\}$:

1. $\left\{F_{m}\right\}$
2. $\left\{F_{m-1}\right\}$
3. $\left\{F_{m-2}\right\}$
4. $\left\{F_{m}, F_{m-1}\right\}$
5. $\left\{F_{m-1}, F_{m-2}\right\}$

A Recursive Formula

Each of our five cases reduces the original inequality to a familiar equation/inequality but for a smaller value of m. This is in part due to the fact that $F_{m}=F_{m-1}+F_{m-2}$. For example, case 2 . gives us the inequality
$0<F_{p_{1}}+\cdots+F_{p_{s-1}}=F_{m_{1}}+\cdots+F_{m_{r-1}} \leq F_{m-2}$
which has $V\left(F_{m-2}\right)-V(0)$ solutions. Adding solutions for each case in this way gives the recursion

$$
\begin{gathered}
V_{m}=2 V_{m-1}+3 V_{m-2}-4 V_{m-3}-2 V_{m-4}+2 V_{m-5} \\
-2 R_{m-1}-2 R_{m-4}+2 R_{m-5}+1
\end{gathered}
$$

where $V_{m}=V\left(F_{m}\right)$ and $R_{m}=R\left(F_{m}\right)$.

Now, the formula $R_{m}=[m / 2]$, deduced in [2], can be used to prove that the recursion is solved by

$$
V_{m}=\sum_{i=1}^{5} c_{i} \lambda_{i}^{m}+m\left[\frac{m}{2}\right\rfloor-\frac{m^{2}}{4}
$$

where the c_{i} are fixed real numbers chosen to fit initial conditions and the λ_{i} are the (real, distinct) roots of the polynomial

$$
x^{5}-2 x^{4}-3 x^{3}+4 x^{2}+2 x-2
$$

Letting $\lambda_{1} \approx 2.48$ be the (unique) root of largest magnitude, we see that $V_{m} \sim c_{1} \lambda_{1}^{m}$ with $c_{1} \approx 0.0735$. Finally, it can be shown that $V(n)=n^{p}$, with $p=\frac{\log \left(\lambda_{1}\right)}{\log (\phi)} \approx 1.89$, in a similar way to the method in [1].

Figure 2: $\frac{V(n)}{n^{p}}$ against n

References

[1] S. Chow and T. Slattery, On Fibonacci partitions, J. Number Theory 225 (2021), 310-326.
[2] L. Carlitz, Fibonacci representations, Fibonacci Quart. 6 (1968), 193-220.

UNDERGRADUATE RESEARCH SUPPORT SCHEME

