The Effects of Viscosity and Heat Conduction On Sound Waves

Introduction

- The effects of viscosity and heat conduction are not typically considered.
- Consider the damping of the sound waves by analyzing dispersion relation.
- Derive the dispersion relation and the damping rate for a non-ideal compressible fluid.
- Heating of the fluid due to viscosity.

Governing equation

Non-ideal fluid case:

- ✓ Navier-Stokes equation: $\rho\left(\frac{\partial \bar{u}}{\partial t} + \bar{u} \cdot \nabla \bar{u}\right) = -\nabla p + \mu \nabla^2 \bar{u} + \left(\zeta + \frac{1}{3}\mu\right) \nabla (\nabla \cdot \bar{u})$
- ✓ Continuity equation: $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \bar{u}) = 0$
- ✓ Energy equation:

Ideal fluid case:

- ✓ Euler's equation $\rho\left(\frac{\partial \overline{u}}{\partial t} + \overline{u} \cdot \nabla \overline{u}\right) = -\nabla p$
- ✓ Continuity equation $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \bar{u}) = 0$
- ✓ Adiabatic energy equation

Mathematical method

$\omega = \pm C_s k$

Linear theory of sound waves: $p = p_0 + p_1(\bar{r}, t)$ Static term and dynamic term where the dynamic term can be treated as first order small term

000

0

Complex exponential method: $p_1(\bar{r}, t) = \text{Re}\{\hat{p}_1 \exp(i(\bar{k} \cdot \bar{r} - \omega t))\}$

Matrix formation:

ΓP	$p_0 - \gamma p_0$	0 0	0	0	$\lceil \hat{p}_1 \rceil$	
	$-\omega$	$ ho_0 k_x$	$ ho_0 k_y$	$ ho_0 k_z$	$\hat{\rho}_1$	
k	$x_x = 0$	$- ho_0\omega$	0	0	u_x	:
k	$x_y = 0$	0	$- ho_0\omega$	0	u_y	
k	$z_z = 0$	0	0	$- ho_0\omega$	u_{z}	

Fourier components – focus on a given wavenumber & frequency (linear theory)

 $T(x,t) = T_h(x,t) + T_p(x,t)$

The temperature function

$$\rho C_{\nu} \left(\frac{\partial T}{\partial t} + \bar{u} \cdot \nabla T + (\gamma - 1) T \nabla \cdot \bar{u} \right) = \\ \mu \left(\frac{\partial u_i}{\partial x_j} \frac{\partial u_j}{\partial x_i} + \frac{\partial u_i}{\partial x_j} \frac{\partial u_i}{\partial x_j} \right) + \left(\zeta + \frac{1}{3} \mu \right) (\nabla \cdot \bar{u})^2 + K \nabla^2 T$$

✓ Ideal gas law: $p = \frac{k_B}{\hat{m}} \rho T$

$$\left(\frac{\partial}{\partial t} + \bar{u} \cdot \nabla\right) \left(\frac{P}{\rho^{\gamma}}\right) = 0$$

Wave equation;

$$rac{\partial^2 p_1}{\partial t^2} = c_s^2
abla^2 P$$
 , where $c_s = \sqrt{rac{\gamma P_0}{
ho_0}}$

$$T_{h}(x,t) = \int_{-\infty}^{\infty} \left(\frac{D}{\pi t}\right)^{\frac{1}{2}} \cdot e^{\frac{-(x-y)^{2}D}{t}} \cdot A\cos(ky)dy$$
(solved by using Green's function)
$$T_{p}(x,t) = \int_{0}^{t} \int_{-\infty}^{\infty} \left(\frac{D}{\pi(t-\tau)}\right)^{\frac{1}{2}} \cdot e^{\frac{-(x-y)^{2}D}{t-\tau}} \cdot \{Bsin(ky-\omega t) + C[sin(ky-\omega t)]^{2}\}dyd\tau$$

Numerical results

Frequency change for Helium with damping rate with respect of k (left) and Re (right)

Temperature change for air with wave compression and expansion

What we have done:

- Studied the effect of viscosity and heat conduction
 - dispersion relation
- Heating of gas due viscosity Green's function solution
- Numerical results

Future investigation:

- Investigate other scenarios where heating could occur e.g. industrial or astrophysical conditions
- Full coupled problem of viscous heating
- changes to temperature influence the velocity field
- Reduce numerical error in code

Student: Yijiang Niu Supervisor: Dr. Alexander Hague Department of Mechanical Engineering Funded by SURE 2023